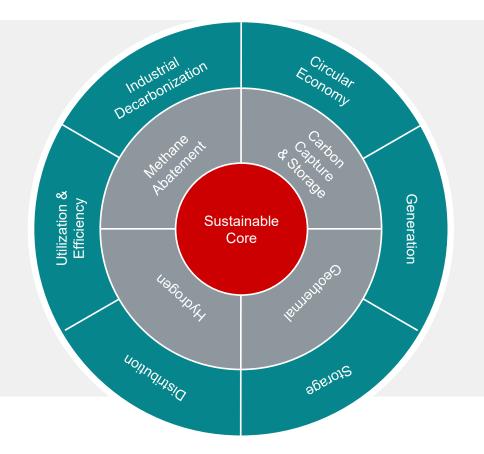
HALLIBURTON


Geothermal Association of Norway

Transfer of Oil&Gas drilling and well competence for geothermal resource extraction

University of Stavanger 13'th March 2024

© 2023 Halliburton. All rights reserved.

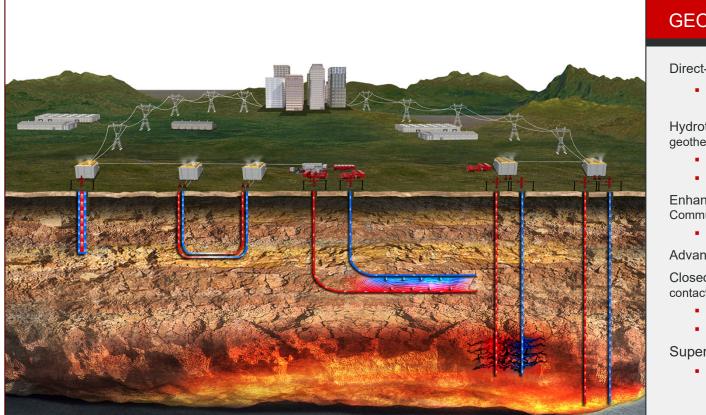
Halliburton Approach to Decarbonization

Decarbonize Core Operations

Quantifiable low-impact solutions across the well lifecycle

Advance Low Carbon Solutions

We deploy our technologies in some of the fastest-growing new energy segments, such as carbon capture and storage, geothermal, hydrogen, and emissions management


Explore Emerging Energy Markets through Halliburton Labs

Collaborative environment to scale novel clean energy solutions

Halliburton's global geothermal footprint

Geothermal wells are complex systems

GEOTHERMAL WELL SYSTEMS

Direct-use Geothermal

 Heating and cooling of residential and industrial buildings

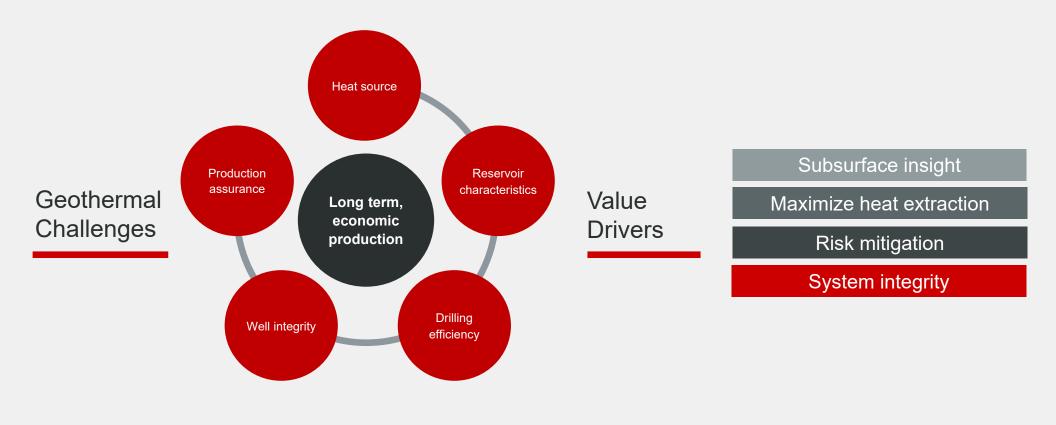
Hydrothermal Resource Geothermal Current geothermal wells - conventional

- Expensive, time-consuming exploration
- Producing fields far from demand centers

Enhanced Geothermal System (EGS) Communication between wells

• Wider geographic range than conventional

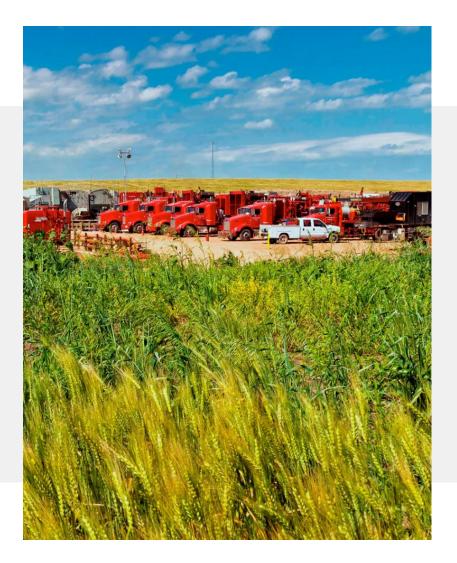
Advanced Geothermal Systems (AGS)


Closed Loop Heat conducting fluids never contact the rock

- Tube-in-tube design
- Loop technologies

Supercritical Geothermal

Extreme depths Pressures Temperatures (> 10,000') (> 3,200 psi) (>374°C/705°F)

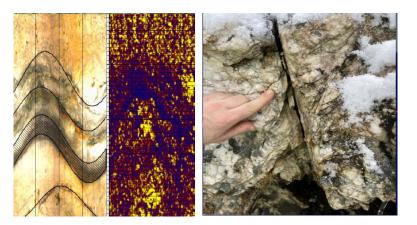

Where we focus

© 2023 Halliburton. All rights reserved.

Where we play in the lifecycle

PRELIMINARY SURVEY	EXPLORATION	FIELD DEVELOPMENT	ENGINEERING & CONSTRUCTION (EPC)	OPERATION & MAINTENANCE
 Surface exploration starts with resource evaluation Permitting 	 Geology, geophysical, geochemistry, MT/TEM studies. Drill exploration wells, well testing, Cementing & Stimulation 	 Drill production and injection wells Drill cooling water wells Perform reservoir simulation 	 Construct steam/hot water pipelines Power plant & cooling Substation & transmission 	 Start-up & Commissioning Operation & maintenance of system
· · · · · · ·	SUBSURFACE WEL	L CONSTRUCTION		
· · · · · · ·	COMPLETIONS			PRODUCTION

Geothermal Norway Case Study

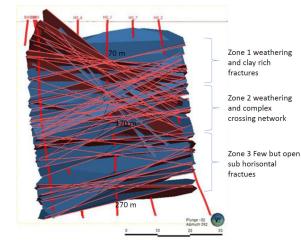

Kvitebjørn Varme

Tromsø, Norway Case Study: High Enthalpy Aquifer Technology (HEAT) concept - store and recover seasonal waste heat from industrial processes

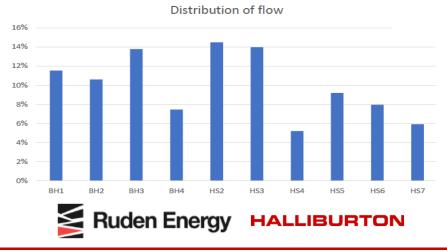
5-9 MW	
140°C	
65-100°C	
11	
300m	
20 GWh	
10+GWh	

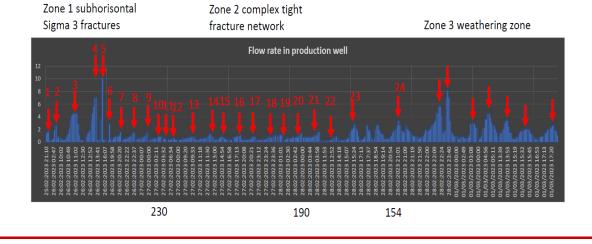
Ruden Energy HALLIBURTON

Tromsø, Norway Case Study: High Enthalpy Aquifer Technology (HEAT) concept - store and recover seasonal waste heat from industrial processes



- Network of injector and production well(s) drilled into bedrock
- Underground fracture system to be established between injector(s) and producer(s) to maximize contact area between circulating water and bedrock.
- Halliburton SurgiFrac[®] method is a key technology enabler for this concept.
- Risk assessment
- Monitoring, tremors and leaks
- Ground conditions very low probability of surface tremors
- Sand and water no chemicals


Tromsø, Norway Case Study: High Enthalpy Aquifer Technology (HEAT) concept - store and recover seasonal waste heat from industrial processes



Stimulation results:

- 1,288 m3 water; 88 tonnes sand
- 35 Hydra-jet stimulation stages
- Achieved distributed water injection and good communication between wells
- Test production in October 23 April 24
- Full scale storage summer 2024

THANK YOU

Jan Tore Helgesen

Sr. Country Manager - Low Carbon Solutions, Sustainability and Consulting

jantore.helgesen@halliburton.com