Projects on deep geothermal horizontal closed loop technology

Ola Vestavik Reelwell, Stavanger

GEOTHERMAL PROJECTS ON REELWELL CLOSED LOOP TECHNOLOGY

- HOCLOOP Horizontal Closed Loop Funded by the Horizon Europe Programme: Co-ordnated by IFE, partners are institutes in Belgium, Finland, France, Germany, Italy, Norway and Poland.
- 2. Geothermal Joint Industry Project Funded by The Research Council of Norway, OMV and the partners are Halliburton, SNSK, IFE and Reelwell.

Deep Geothermal Energy System

COMPARISON

Conventional geothermal solution	Horizontal closed loop solution
-Minimum 2 wells	-One well
-High permeability & connectivity of the reservoir	-Closed-loop system – permeability is not required
-Require use of brine with adequate chemistry	-Can use alternative fluids for improved performance
<u>Common issues</u>	<u>Solved issues</u>
-Low permeability & connectivity of the reservoir	-Suited for low permeability tight reservoirs
-Rapid decrease of injectivity	-No scaling, precipitation, or corrosion issues
-Scaling/precipitation in surface installations	-Avoid rock/fluid interactions
-Risk for unproductive wells/ non targeted aquifers	-Avoid risk for unproductive wells
<u>Adverse Consequences</u>	Expected benefits
-Risk of induced seismicity	-Minimize the risk of induced seismicity
-Loss of efficiency & performance	-Low maintenance costs
-Project abandonment	-Increase outreach of geothermal energy
-Pollution of non-targeted aquifers	-Minimal environmental impact
-Low acceptance	-Improved acceptance

Example - performance calculations

Assumed well trajectory

Horizontal well at 4 km vertical depth

Section view

Well DK1: V=3.7 km, H=4 km, Q=6 kg/s

IFE

1. PROJECT HOCLOOP:

Develop a new closed loop solution to reduce cost, improve performance to enable use of geothermal energy everywhere.

SCOPE OF WORK:

- Develop models and procedures for the closed loop system
- Consider improvements by use of CO2 and alternative fluids
- Perform case studies on implementation and impact
- Build and test the "Dual Heat String" (DHS)
- Verify prototype DHS and procedures in a full-scale test well (Ullrigg)
- Develop the technology to TRL 5

2. GEOTHERMAL JIP

Scope:

- **1** Build model for the heat flow, influx and transport.
- 2 Design of the heat transport string.
- 3 Pre-study and provisional plan for an example well at Svalbard.
- 4 Evaluate production performance, cost and risk.

REELWELL CLOSED LOOP SOLUTION FOR GEOTHERMAL ENERGY PRODUCTION

Improve access to the geothermal resources

- No need for hydrothermal reservoir or fracking
- Provide access to geothermal resources anywhere.

Improve energy production and performance

- Improve production by increasing the well reach.
- Improve the electric power production by use of CO2 or alternative fluids.
- Minimize heat loss by the insulated DualPipe and provide low temperature on the wellhead.
- Improve social acceptance –avoid seismicity, toxic waste, small footprint etc.

Reduce costs

- Avoid NPT, risks and costs linked to conventional geothermal solutions.
- Reduce rig size and operation costs for well construction.

