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THE NEED FOR ADVANCED 
INDUSTRIAL MAINTENANCE 
STRATEGIES

• Fault degradation modeling
• Analytical and numerical modeling 
• Model-based fault diagnostics
• System identification

• Data-driven models
• Data fusion 
• Deep learning 
• Data analytics

• Signal processing
• Fault tolerance 
• Autonomous diagnostics
• Reliability & maintenance planning
• Remaining useful life estimation 

• Soft sensors
• Industrial IOT
• Distributed computing

 

Physics of 
failure

Artificial 
Intelligence

Diagnostics 
and 
Prognostics

Sensing 
and Data 
Acquisition

Maintenance is, by many, associated with a mental picture 
of a mechanic holding a wrench repairing machineries. 
A task often seen by organisations as a necessary evil in 
order to keep the business running as usual. 

With the recent progresses on sensors and data analytics, 
the field of maintenance is undergoing a complete  
revolution. The old picture of a mechanic is fading and a 
new picture of a machinery data interpreter is emerging 
whilst organisations will rely on maintenance groups to  
deploy new business models and survive in the digital world.

Indeed, with the deployment of sensors and data analytics 
on assets, the current business models of “selling machine 
packages” to owners can be confronted. Instead of selling 

machines, advanced maintenance strategies based on the 
asset health can enable equipment manufacturers to sell 
the function that the hardware supports; e.g. number of  
litres pumped, or number of tonnes lifted per day with 
some guarantee of availability. 

In these new business models, asset owners transfer some 
responsibility for achieving the performance and reliability 
to the manufacturer in return for financial compensation.
This sharing of accountability is of benefit to all as it 
pushes manufacturers to reduce consumption of resources 
by only replacing parts that need to be replaced. It also 
improves quality of services as both the customer and the 
supplier will share the same objectives: that is performance, 
reliability and cost reduction. 

At Teknova and the University of Agder, research is focused on  
providing end-to-end solutions for predictive maintenance and  
health management of high-value equipment in energy, oil & gas, 
mining and process industries. The objective is to improve reliability 
and availability while reducing unplanned downtime and  
maintenance costs.
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At Teknova and the University of Agder research is focused 
on providing end-to-end solutions for predictive maintenance 
and health management of high-value equipment in energy, 
oil & gas, mining and process industries. 

Our objective is to improve reliability and availability while 
reducing unplanned downtime and maintenance costs. 
Research into condition monitoring, diagnostics and  
prognostics, can provide real-time assessment of asset 
health and help in planning inventory, logistics and  
maintenance actions. The team’s research is focused on  

rotating machinery components that are ubiquitous in  
various industries as well as non-dynamic components 
such as ropes, which are a challenge for the industry.  

Through a combination of classical signal processing 
methods with the novel industry 4.0 technologies, the 
team aims to provide solutions for large-scale deployment 
of health management systems for digital and connected 
industries of the future.

Profesor Kjell G. Robbersmyr is the Head of the Dynamics Research Group and of the 
ISHM lab at The University of Agder (UIA). The ISHM lab at UiA is focused on providing 
end-to-end solutions for predictive maintenance and health management of high-value 
equipment in energy, oil & gas, mining and process industries. He received his M.Sc. 
(1985) and Ph.D. (1992) degrees in Mechanical Engineering from the Norwegian 
University of Science and Technology, Trondheim.
 
Contact: kjell.g.robbersmyr@uia.no

Kjell G.  
Robbersmyr

Born in France in the 80s, Meyer started his career in the nuclear industry with an  
associated physico-chemistry education. He moved to England in 2003 to pursue a 
BSc, a Master and a PhD in the field of optoelectronics.
 
 In 2010, Thomas relocated to Norway, switched focus to predictive maintenance  
and worked as physicist and later as a business development manager for Teknova, 
the youngest research institute in Norway. Meyer leads the task force on maintenance 
within the SFI Offshore Mechatronics project and coordinates the advanced maintenance 
activities at Teknova.
 
As an aside to this position, and in order to stay in touch with the academic world,  
Meyer also works part-time for the University of Agder as an associate professor in  
the department of Mechatronics.

Contact: tjjm@teknova.no

Thomas J.J. Meyer



4



5

UNDERSTANDING THE 
‘ROPE OF THE FUTURE’

”The aim of this project is to research condition monitoring 
technologies that can better predict the remaining useful life 
(RUL) of large diameter fiber ropes used in subsea construction 
cranes during offshore operations,” explains Shaun Falconer, 
PhD Research Fellow at the University of Agder, explains 
Shaun Falconer, PhD Research Fellow at the University of 
Agder, working for the SFI Offshore Mechatronics project 
work package 5, led by Teknova..

Fiber ropes have been shown to be stronger and have 
superior mechanical properties than their steel counterparts 
of the same diameter. While steel ropes must account for 
their own weight when determining the maximum depth 
a payload can be deployed, fibre ropes are considerably 
lighter and almost neutrally buoyant in water, meaning that 
smaller crane structures utilizing less offshore vessel deck 
space and weight can be implemented to reach greater depths. 
However, due to temperature build up in the fiber rope 
through the Cylcic-Bend-Over-Sheave (CBOS) motion,  
creep is an issue as HMPE (High-Modulus Polyethylene) 
fiber rope has a maximum safe working temperature of  
65o to 70o centigrade.

Understanding the impact active heave compensation 
motion can have on deterioration of fiber ropes used in  
cranes during deep sea construction is of key concern for 
safer offshore lifting operations. Supported by recent 
experimental studies in the project SFI Offshore Mechatronics, 
the use of computer vision as an extension of visual  
inspection for condition monitoring purposes has been 
demonstrated. An improved understanding of condition 
indicators of fiber ropes during offshore lifting operations 
will lead to advances in the application of condition-based 
maintenance. This will be realised through improved RUL  
estimates, greatly reducing premature retirement of fiber rope. 

R&D activities:  
Experiments were performed by recording automatic width 
and elongation measurements of discrete sections of fiber 
rope through computer vision algorithms developed using 
OpenCV. Fiber ropes were subjected to tension-tension 
testing, the fiber rope was shown to reduce in width by  
around 10 per cent and elongate by around 2 per cent  
at the point before rupture, indicating that these  
measurements are suitable condition indicators for  
monitoring purposes. For more detailed results,  

Condition Monitoring of Large Fiber Ropes

Superior qualities have dubbed fiber ropes as ‘rope of the future’. 
There is however a lot to learn about how fiber ropes perform over 
time and during intense use.

Diameter measurement algorithm (left), elongation measurement algorithm (middle) and experimental results correlating width and  
elongation measurements to tension data (right). From Falconer et al. (2017)
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Shaun Falconer performs tests on fiber ropes at the rope-testing 
machine at Mechatronics Innovation Lab in Grimstad.
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experiment set up and specific features of the computer vision algorithm, please read 
Falconer et al. (2017). As an example, the left and middle images in the figure on page 5 
illustrate the application of the automatic width and elongation measurement algorithms. 
The right image displays the results from one of the experiments run on a fiber rope, where 
the width measurements and the elongation of the discrete rope section are correlated 
against the tension applied by the tension-tension machine.

Outlook: 
Future research will extend the computer vision algorithm for automatic width and 
elongation measurements to monitor the condition of fibre ropes during CBOS motion 
through testing until failure. A CBOS test machine operated by Teknova, the University of 
Agder and the Mechatronics Innovation Lab will be used to simulate the motion of fibre 
rope during offshore active heave compensation. Additionally, thermal models for fiber rope 
due to CBOS motion are being developed to allow the implementation of IR cameras to give 
more reliable estimates of the temperature inside the rope. Ultimately several monitoring 
techniques (sensor fusion) are to be combined into a single approach to allow the condition 
of the rope to be gauged and create the best estimate of RUL.

Publications: 
”Preliminary Results on Condition Monitoring of Fiber Ropes using Automatic Width and 
Discrete Length Measurements”, S.Falconer, A.Gromsrud, E.Oland and G.Grasmo, Annual 
Conference of the Prognostics and Health Management Society 2017, FL, USA, October 2017

”Condition monitoring technologies for synthetic fiber ropes – a review”, E.Oland,  
R.Schlanbusch and S. Falconer, International Journal of Prognostics and Health 
Management Society 2017 
 
Acknowledgement: 
The research in this paper is 100% funded from the Norwegian  
SFI Offshore Mechatronics, a consortium with partners from  
industry and science, hosted by the University of Agder.

Shaun Falconer holds an MEng in Mechanical 
Engineering with Aeronautics from the University of 
Glasgow, Scotland. As part of his studies he spent a 
year on Erasmus study placement at the Technical
University of Madrid, Spain. He later completed his 
Master’s thesis, again as part of the Erasmus 
programme, in conjunction with the University of 
Navarra and the CEIT research centre in San Sebastian,
Spain, where he researched the use of extended finite 
element modelling techniques in simulations of 
aeronautical materials under fatigue testing.

After graduation he worked with the Structural 
Monitoring Division of Fugro GEOS in Glasgow, 
Scotland between 2014 and 2016 where he gained 
knowledge in the design and data analysis of structural 
monitoring systems on offshore and subsea structures 
in the oil and gas sector. In addition to this, he has 
offshore installation experience in a variety of 
locations, including Norway, UK, Nigeria, Azerbaijan, 
Qatar, Congo and Angola.

Since October 2016, he has been a PhD Research 
Fellow at the University of Agder (UiA) as part of the 
SFI Offshore Mechatronics WP 5.3 investigation into 
condition monitoring technologies for large diameter 
fiber ropes, in collaboration with Teknova. He is 
currently supervised by Prof Geir Grasmo (UiA), 
Dr Ellen Nordgård-Hansen (Teknova) and Dr Thomas 
Meyer (Teknova).

Shaun Falconer
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WHEN WILL 
IT BREAK?

”More precise knowledge of the rope’s health will enable 
us to make better and safer decisions. Sensor technology is 
superior to the human inspections we rely on today for  
determining the condition of ropes,” says Rune Schlanbucsh, 
Senior Researcher at Teknova.

Subsea construction operates at increasingly lower depths, 
lifting heavier payloads, thus requiring larger steel wire 
ropes. 

Modern ropes have complicated construction for avoiding 
payload rotation up to 3-4000 meters, and have diameter  
up to 180 mm. As such offshore environment are harsh, 
several degradation mechanisms are seen such as lubrication
protrusion due to high pressure, severe corrosion, and 
fatigue due to continuous bending during active heave 
compensation. 

Moreover, traditional human inspection of such ropes is 
not very productive as about 80 per cent of the wires are 
hidden below the rope visible surface, and the outer wires 
are obscured by a thick layer of grease. It is difficult to keep 
up concentration for effectively inspecting and assessing 
long lengths of rope within a time frame not hampering 
operations.

As the cost of modern subsea steel wire ropes increases 
with their size, it is important to research robust condition
monitoring technologies for being able to assess the 
current health of the steel wire rope in near-real time, 

Condition Monitoring of 
Large Steel Ropes

Sensor technology is used to 
monitor the condition of large 
steel ropes. The goal is to 
prevent accidents, extend  
rope lifespan and challenge  
regulations.
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Rune Schlanbusch adjusts the rope-testing machine before continuing tests.
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along with robust prognostic models for enabling optimal 
replacement planning. Thus, the objective of this work is to 
provide enough scientific evidence for rope users and 
classification companies to change the maintenance 
regime and discard criteria of steel wire ropes.

R&D activities: 
The work is focusing on combining the most suitable 
sensing technologies for assessing the steel wire rope in 
real time. At the time beeing we are looking into combining
the following three monitoring technologies for feeling 
(magnetically, internal wire breaks and corrosion), hearing 
(acoustic, real-time wire breaks) and seeing (optic, external 
wire breaks and mechanical damage).

The main priority throught the first part of the project has 
been to acquire and develop all sensing technologies and 
a continuous bend over sheave (CBOS) test rig. 

Outlook: 
The equipment is now in place and the test rig was set up 
during June 2017 and is now ready for substantial testing 
during the next project phase. The test rig has a capacity 
of 15 tonnes line pull, sufficiently for fatiguing ropes up 
to 30 mm diameter. The results so far can be found in the 
publications mentioned below.

The really big offshore steel ropes are much thicker than 
the ropes we are able to test on our current machine. 
It is unclear whether our findings on smaller ropes can be 
extrapolated to bigger ropes. 

Publications:
Schlanbusch, R., E. Bechhoefer and T. J. J. Meyer (2017). 
Low Computation Acoustic Emissions Structural Health 
Monitoring Through Analog Signal Pre-Processing. In:  
Proceedings of the Annual Conference of the Prognostics 
and Health Management Society, St. Petersburg, FL.

Schlanbusch, R., E. Oland and E. Bechhoefer (2017).  
Condition Monitoring Technologies for Steel Wire Ropes –  
A Review. International Journal of Prognostics and Health 
Management, vol. 1, 14 pages. 

Acknowledgement:  
The research in this paper is  
100% funded from the Norwegian 
SFI Offshore Mechatronics, 
a consortium with partners  
from industry and science, hosted  
by the University of Agder.

Rune Schlanbusch received his MSc in Space Technology from Narvik University  
College (NUC), Norway in 2007, and a PhD in Engineering Cybernetics from NTNU, 
Norway in 2012. He currently holds positions as Senior Researcher at Teknova, Norway 
and Associate Professor II at the Faculty of Science and Technology, The Arctic  
University of Norway (UiT).  
 
His major research interests include nonlinear control theory and stability analysis, 
Multiphysics modeling and simulation, intelligent sensor technologies, unmanned 
technologies and condition monitoring. He is currently a member of the IEEE Control 
System and Robotics and Automation Societies, and leads the Research and  
Development group of the Norwegian national drone organization UAS Norway.

Rune Schlanbusch 
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Contition Monitoring of Bearings in Low-Speed Machines

All rotating machinery need roller-element bearings to 
function smoothly and effortlessly. Bearing faults can 
result in serious machine damage and costly down-time for 
the operator. 

In the laboratory at UiA, PhD Research-Fellow Andreas 
Klausen is busy destroying bearings. He measures the 
vibration signals coming from the rotating bearings as they 
gradually wear down and break. The vibration signature 
changes during the degradation process, and reveals the 
state of the bearing.

”My research is focused on developing reliable methods for 
detecting faults in slowly rotating bearings by 
processing and analyzing the bearing vibration signal. 
When a bearing roller spin over a local defect, a distinct 
vibration signal is generated, and this can be picked up by 
a vibration sensor. The exact location of the damage can 
be identified by the fault impact frequency, and the severity 
by the magnitude of the vibration, Klausen says.”

Bearings operating under low-speed and high loads can 
be found in for example winches, windmills, and oil-rig top 
drives. By analyzing data from the machine and comparing 
them to signals from a healthy bearing, a computer can 
automatically detect faults and warn the operator at an 
early stage to avoid break-down of these machines. 

Rotating machinery employ rolling element bearings to 
reduce friction between moving parts and stationary parts. 
A typical bearing consists of: an inner ring that is fastened 
to the shaft; an outer ring that is stationary inside a bearing 
housing; and rollers/balls that move between the two rings 
in their race-ways. Undamaged bearings are critical for 
smooth operation of the machine. Bearings wear out over 
time due to the cyclic stress induced from every revolution. 
After N number of cycles, the wear is so great that metal 
particles detach from the race-ways, or the rollers. This 
leaves irregularities like gaps or holes in the bearing. 

As the machine continues to rotate, the rollers hit these 
irregularities, causing shocks of vibration, which accelerate 

further wear in the bearing. If the bearing is not replaced 
in time, the internal damage gets so great that the bearing 
may cause complete machine shutdown. Determining the 
exact machine bearing life-time in cycles, N, is difficult due 
to the complex modeling required to include all factors. 
An estimate can easily be calculated, but a huge statistical 
uncertainty is included. 

Instead of relying on replacing the bearing before it fails, 
the machine may be monitored using sensors to detect 
early signs of faults. A schematic is shown in Figure 1 
where a bearing is monitored using a vibration accelerometer. 
As the shaft rotates, the rollers hit a small gap in the outer 
race, causing the bearing to vibrate. 

This vibration is captured by the accelerometer, and the 
raw data is displayed on the screen. Analyzing this data 
using signal processing methods allows for detecting 
this fault early in process, allowing for maintenance to be 
scheduled. In this example, the vibration peaks are easy to 
detect due to a high impact energy, as can be seen from the 
red-circled peaks. 

Machines operating in a low-speed condition emit much 
lower impact energy due to slower bearing velocity. 
Examples are large winches, wind-mills, top drives, 
and output shaft of gearboxes. In these cases, it is a 
challenge to detect these faults early, however they 
are just as critical as in other machines. The machine 
vibration is often a combination of several sources 

EXPLORING THE ART OF 
SMART LISTENING

The ability to listen is valuable – especially when it comes to  
bearings experiencing serious stress. 

Figure 1: The bearing vibration is monitored using an accelerometer  
attached to the bearing housing.
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including: Bearings, motor, gearbox, shaft, and external 
sources. In addition, the vibration travels from the bearing 
to the accelerometer, causing extra distortion of the signal. 
To detect the bearing vibration during low-speed conditions, 
it is necessary to separate this component from the other 
sources. The vibration caused by the motor, shaft 
unbalance, component misalignment, and gearbox teeth 
meshing, are all synchronous to the shaft rotation; i.e. the 
vibration caused by these sources are occurring in cycles 
correlated to the shaft. The vibration caused by impacts  
in the bearing, however, are slightly random due to the  
dynamics of roller slip and internal clearance. 

This randomness allows for separation of the bearing 
vibration component from the rest using an Autoregressive
model (ARM) filter. An ARM learns to predict the vibration 
dataset based on previous values. The vibration components 
originating from the synchronous sources are predictable 
by this ARM. Bearing impact vibration on the other hand, 
is not predictable due to the rollers random nature, and 
becomes part of a residual error. By preserving this 
residual, the vibration signal is less noisy and easier to 
analyze. An example of this filter is given in Figure 2: (a) 
shows the raw vibration signal, and (b) indicates bearing 
fault vibration after the ARM filter is applied.

After retaining the residual containing the bearing fault 
vibration, it is necessary to determine the fault type by 
analyzing the signal. This analysis is often performed in 
the frequency domain because the fault impacts happen 
at a certain cyclic frequency. This cyclic frequency is 
determined by the geometry of the bearing. The bearing in 
Figure 1 has an outer-race fault. Using the radius of each 
roller, the number of rollers, and the distance from the 
center of the shaft to the center of a roller, it is possible 
to calculate how often a roller should pass a certain point 
on the outer-race for each shaft revolution. The same 
philosophy can be used to find the cyclic frequency for how 
often a point on the inner-race is passed, or how often a 
roller spins around its own axis. Knowing these cyclic 
frequencies of the bearing, the remaining task is to identify 
impacts occurring at these cyclic frequencies in the 
vibration signal. If there is any correspondence, it is very 
likely that there is a damage in the bearing. 

The residual signal is analyzed in the frequency domain to 
identify high energy peaks at the three cyclic frequencies 

Figure 2: The raw vibration signal is filtered using an autoregressive 
model to highlight bearing faults. (a) The raw signal. (b) The filtered 
signal with red dots signalizing the bearing impact vibration.
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Andreas Klausen at work in the lab.
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belonging to the bearing in question. Using the Fast Fourier 
Transform (FFT), the time-domain signal is transformed 
to the frequency domain where the signal is described 
using sine-waves with certain frequencies, amplitudes and 
phases. Before transforming to the frequency domain, the 
envelope of the residual signal is first identified, as it aids to 
describe each bearing impact as a single event. 
The envelope of the signal is shown as a red line in Figure 
3 (a), while the residual from the ARM filter is the blue line. 
The frequency spectrum gained after performing the FFT 
is shown in Figure 3 (b). Here, the x-axis is given in orders, 
which is a measure of cycles per shaft revolution. From 
the bearing geometry, a point on the outer-race is passed 
5.12 times per shaft revolution. In the frequency spectrum 
shown in Figure 3 b), harmonics at 1, 2, and 3 times 5.12 are 
marked, indicating that there is an outer-race fault present 
in the bearing. 

Hs procedure is typical for most applications where bearing 
fault identification is required. The biggest difference in 
low-speed conditions is the lower impact energy, which 
require more sophisticated algorithms to prepare the 
signal. The ARM is one such powerful method.

R&D activities:
In this article, the vibration generated by a damaged 
bearing operating at low-speed showcase the difficulty of 
fault detection during this machine condition. The signal is 
shown to be contaminated by noise, which makes the 

analysis difficult. By applying the Autoregressive model 
filter and the Hilbert envelope, it is possible to detect the 
fault before catastrophic failure occurs. The research 
project will continue research on low-speed bearing 
diagnosis by developing new methods for automatic fault 
detection.

Outlook: 
To continue the research on low-speed scenarios, a test 
bench is built and used at UiA. Its main objective is to wear 
a bearing to failure by running it at high speed with heavy 
loads. During the life-time of the test bearing, the vibration 
signal is measured at lower speeds, down to 20 revolutions 
per minute. Using the available data, the goal of the project 
is to create algorithms that aid to perform early diagnosis 
of a damaged bearing. 

Publications:
R. B. Randall and J. Antoni, ”Rolling element bearing 
diagnostics - a tutorial,” Mech. Syst. Sig. Process., vol. 25, 
DOI 10.1016/j.ymssp.2010.07.017, no. 2, pp. 485–520, 2011. 

W. Wang and A. K. Wong, ”Autoregressive model-
based gear fault diagnosis,” J. Vib. Acoust., vol. 124, DOI 
10.1115/1.1456905, no. 2, pp. 172–179, 2002.

Klausen, A., Folgerø, R. W., Robbersmyr, K. G., Karimi, H. R., 
2017. ”Accelerated Bearing Life-time Test Rig Development 
for Low Speed Data Acquisition.” Modeling, 
Identification and Control 38(3), pp.143-156.

Klausen, A., Robbersmyr, K. G., Karimi, H. R., 2017. 
”Autonomous Bearing Fault Diagnosis Method based on 
Envelope Spectrum.” IFAC World Congress, 9-15 July, 
Toulouse, France. 

Kandukuri, S.T., Klausen, A., Karimi, H.R. and Robbersmyr, 
K.G., 2016. ”A review of diagnostics and prognostics of 
low-speed machinery towards wind turbine farm-level 
health management.” Renewable and Sustainable Energy 
Reviews, 53, pp.697-708. 

Acknowledgement:  
The research in this paper has received funding from the 
Norwegian Ministry of Education and Research.

 

Andreas Klausen was born in Norway in 1991 and lived in Vennesla before moving 
to Grimstad to study in 2010. He received the Bachelor’s and Master’s degrees in 
Mechatronics from the University of Agder, in 2013 and 2015 respectively. 
His Bachelor thesis deal with the modeling of a hydraulic valve with a built-in 
closed-loop spool position controller, while his Master thesis concern modeling and 
control of a hydraulically actuated load circuit. He is currently working on his PhD in 
Mechatronics within the field of Condition Based Maintenance. His project deals with 
condition monitoring of slowly rotating roller element bearings. His research interests 
include the areas of signal processing, modeling, optimization, and condition based 
maintenance

Andreas Klausen 

Figure 3: The envelope spectrum is analyzed to detect faults in the 
bearing. (a) Filtered vibration signal with the corresponding envelope. 
(b) The envelope frequency spectrum indicating an outer-race fault.
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Contition Monitoring of Large, Slow-Rotating Bearings

DETECTING BREAK-DOWNS 
BEFORE THEY OCCUR

”The average cost of downtime on a top drive in the off 
shore sector is about 1,5 million kroner per day. If we can 
find new ways of detecting imminent damage and failures 
to the equipment at an early stage and avoid equipment 
failure, it will be highly beneficial to the industry,”  
explains Martin Hemmer, PhD Research Fellow at the  
University of Agder, working for the SFI Offshore  
Mechatronics project work package 5, led by Teknova.

Hemmers approach is to explore ways of improving 
listening systems that can ”hear” trouble before it turns 
into a big problem.

– When machinery gets worn and fatigued, it generates 
signals that contains information about the fault. I´m using 
sensors that pick up these signals and I develop algorithms 
that can analyse them. We´re talking about improved usage 
of existing sensor technology and new ways of analyzing 
data, Hemmer says.

Today operator relies on strict routine inspection- and  
maitenance intervals to prevent failure and damage.  
This is a costly and often difficult task in a running facility. 
Yet break- downs of bearing and moving parts in heavy off shore 
and energy producing machinery occur from time to time. 

Improved methods of signal analysis, can prevent costly machine 
failures and break-down in the energy sector. 

Martin Hemmer displaying the kind of bearings that are part of his research.
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The focus of this projects is larger bearings, typically found 
in on offshore applications like top drives, wind turbines, 
cranes and winches. The consequence of failure typically 
increases with bearing size, with high cost of unplanned 
downtime and larger potential for hazardous situations. 
Condition Monitoring (CM) of large, slow-rotating REBs 
(Rolling element bearings) have challenges that are 
associated with both size and rotational speed of the 
bearing, making conventional, acceleration-based  
monitoring systems less suitable. 

Localized faults in races, rolling elements and cage can 
be diagnosed by identifying peaks in the frequency- and 
envelope spectrum corresponding to the fundamental fault 
frequencies of the bearing, which are functions of bearing 
geometry and rotational speed. As acceleration is the 
second time-derivative of displacement, faults in low-speed 
applications will generate low energy vibrations that are 
easily masked by background noise. The signal transmission 
path also increases with bearing size, which further masks 
the signal of interest. 
At low speeds, fault frequencies, sidebands and other 
forcing frequencies can be close in frequency domain. 
High frequency resolution is required for separation. 
Frequency bin width is inversely proportional to acquisition 
time, which makes measurements more prone to capturing 
speed variations, further smearing the frequency content.

A study of downtime causes on offshore drilling rigs 
identified top drive bearing failure as a large contributor, 
with an average downtime cost of 1.4 MNOK. With this in 
mind, we have performed comparative tests on a top drive 
taken out of operation. The machine was tested using a 
main bearing axial bearing at three stages of degrading 
health over a range of speeds. A new bearing was tested 
for reference, before being replacing is with a worn bearing. 
The worn bearing was then tested under normal operating 
conditions, before artificial damage was applied the roller 
end and run under poor lubrication conditions. 

Three different vibration systems and one Acoustic 
Emission (AE) system was compared. A purpose-built 
adaptor plate allowed simultaneous testing of all systems. 
It was found that AE RMS values correlated better with 
the bearing health degradation than acceleration RMS. 
Compared to the vibration measurement systems, AE had 
complementing forcing frequency identification abilities. 

In applications with high axial forces or combined radial  
or axial load, tapered roller bearings are often used. These 
bearings suffer from other failure modes in addition to 
fatigue in the main load path. Due to tapering of the rollers, 
a seating force acts on the roller end. On the top drive,  
we observed arc-shaped scratches distributed on the roller 
ends. Similar wear is known to occur in other applications 
as well, often due to poor lubrication. The failure can be 
critical, but the non-periodic nature of this failure mode 
leaves Fourier-based analysis unsuitable for fault detection. 

Arc-shaped scratches observed on the roller end of a worn axial 
tapered roller bearing from a top drive.

Left: Acceleration envelope power spectrum. Clear peaks at motor and main shaft speeds with harmonics and sidebands.  
Right: AE envelope power spectrum. Clear peak at lubrication pump frequency, not visible in the acceleration spectrum
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Martin Hemmer received his B.Eng in Mechanical Engineering from Oslo University 
College, and his M.Sc in Mechatronics from the University of Agder in 2014. 
He graduated with a thesis on implementing electric actuation in an offshore application, 
utilizing mathematical optimization methods for mechanical design problems. 
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started his position as a PhD Research Follow, researching condition monitoring 
methods for large, slow-rotating bearings. His main research focus is development of 
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Martin Hemmer 

Dr. Tor Inge Waag is a Senior Scientist at Teknova AS. His background is in Technical 
Physics from NTNU in Trondheim, where he took his M.Sc and Ph.D in signal processing 
for laser light scattering. He has worked in Sintef Petroleum, and as a visiting 
scholar at Chevron Research in California. He also has experience from Sensorlink 
AS in Trondheim, developing sensor solutions for the offshore industry, and has been 
working with condition based maintenance at MHWirth AS. His work has been 
concentrated on the entire chain from sensor data via signal processing to decision 
support, mainly for the offshore industry in Norway, in various fields such as seismic 
acquisition and processing, ultrasonic imaging, electromagnetic sensors, wellbore 
surveying accuracy, condition monitoring and condition based maintenance. 

Tor Inge Waag

R&D activities:
Condition monitoring of rolling element bearings
Fault detection, diagnosis and prognostics Signal processing

Outlook: 
Further investigation of condition indicators capable of 
diagnosing the failure mode is one of the main priorities of 
this project. Currently, visual inspection is the only reliable 
identification method. 

An axial bearing test rig is currently being designed, made 
for both fatigue testing, seeded fault testing and replication 
of the failure mode observed in the top drive test. The rig 
is designed with versatility in mind, prepared to fit a wide 
range of sensors and instrumentation. Bearings up to 
215 mm in diameter can be tested at axial loads up to 
350 kN and speeds up to 2000 RPM. The test rig is planned 
to be operational in Q1 2018. 

Publications:
M.Hemmer, T. I. Waag, K. G. Robbersmyr (2017). A Review 
of Methods for Condition Monitoring of Large, Slow-rotating 
Bearings. COMADEM Conference 2017

M. Hemmer, T. I. Waag (2017). A Comparison of Acoustic 
Emission and Vibration Measurements for Condition 
Monitoring of an Offshore Drilling Machine, PHM 
Conference 2017 
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EXPLORING DISTURBANCES 
IN ELECTRICAL SIGNATURES

”Maintenance makes up for 30 per cent of all costs related 
to offshore wind farms. The percentage is much higher 
than onshore, due to transportation costs and the complexity 
of an offshore environment. Components that are quick to 
fix onshore, could take weeks or even months to fix offshore. 
Downtime is extremely costly, so offshore wind farm operators
need a better understanding of and control over all  
components that are failure prone. By studying disturbances 
in the components electrical signature, we are looking for 
ways to predict failure before a shut down,” says Surya  
Teja Kandukuri, PhD Candidate at the University of Agder.

Offshore wind energy is among the promising renewable 
energy resources that is gaining significant presence across 
the world. As the wind farms grow larger and farther 
offshore, it becomes necessary to adopt a farm-level 
maintenance strategy in order to ensure reliable and economic
operation. Such a maintenance strategy should include 
expanding the scope of condition based maintenance (CBM) 
to the balance of systems that are known to be failure-prone.

Although pitch and yaw systems were often on the list of 
components with frequent failures, they were not a top 
priority for condition monitoring in the onshore wind 
turbines. This is due to the fact that they are easily 
replaceable in the case of onshore wind. However, in case 
of offshore wind turbines, any unplanned maintenance 
activity is expensive due to their location and challenging 
due to short weather windows. Therefore, it is worthwhile 
to evaluate the pitch and yaw systems for condition 
monitoring and remote health assessment. Through 
remote health assessment, the maintenance personnel can 
detect incipient faults and plan the maintenance ahead of 
failures. Such planning results in economizing on logistics, 
inventory and resources. However, health assessment of 
these systems poses significant challenges as they operate 
intermittently and at low speeds. 

R&D activities:
At the University of Agder, the electrically operated  
pitch & yaw systems are being evaluated for condition  
monitoring and health assessment. The research is  
focused on answering the following questions:  

a.	 What is the nature of the pitch and yaw system  
	 operations in typical wind conditions? Can the incipient  
	 faults be reliably detected under such operating profiles? 
b.	 What methods and techniques are suitable for detection?  
	 Are they suitable for farm-level implementation? 
c.	 Is reliable failure prediction (prognosis), that is sensitive  
	 to operating conditions, feasible? 

In order to answer these questions a laboratory setup, 
shown in Figure 1, is built. It includes a multistage  
planetary gearbox and an induction motor controlled 
through a variable frequency drive while the blade root 
loads that are experienced by the pitch drive are generated 
using a load motor through a bevel-planetary-helical (BPH) 
gearbox. The objective of this setup is to simulate various 
seeded faults described in Table 1, in the pitch motor and 
the gearbox, and evaluate detection capabilities. In order 
to assess the feasibility of diagnostics in realistic conditions, 
the 5MW reference wind turbine is simulated in FAST tool 
(Fatigue Aerodynamics Structures and Turbulence) to 
generate pitch speed profile and blade root load profiles. 
The motor faults are diagnosed using motor current signature 
analysis (MCSA) and the planetary gearbox faults shall be 
diagnosed using vibration based methods.  

Condition Monitoring of Pitch and Yaw Systems for Offshore Wind Turbines

Figure 1: Laboratory setup with pitch drive (left) and load motor 
with bph gearbox (right)

Everything is more complicated offshore than onshore. Replacing 
even the simplest components could prove a huge challenge when 
you rely on short and infrequent maintenance windows at the mercy 
of good weather. 
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The principle of MCSA is that any change in the motor’s 
electrical or magnetic circuit will produce a periodic  
disturbance in the electrical fields. This disturbance is then 
detected using Fourier analysis on the supply currents. 
Common faults of induction motor drives, such as the 
stator turns fault, bearing fault and broken rotor bars fault 
are artificially seeded in the test motor and the current 
signatures are studied. Besides, the diagnostics is extended 
to include the gearbox faults utilizing vibration signature as 
well as their effects on the current signature analysis. 
 

Subsystem Component Faulty type

Pitch Drive

Motor Broken rotor bars

Stator winding fault

Worn bearings

Gearbox Planet gear fault

High speed shaft bearing

Sun gear fault

Table 1: Failure modes that will be seeded in the lab setup

Outlook:
While the physics-of-failure methods are extremely 
suitable for detecting incipient failures, to achieve 
large-scale utilization of diagnostics across a wind farm, 
artificial intelligence (AI) techniques may be leveraged. 
This has the advantage of bifurcating the diagnostics 
process into a preliminary analysis at the wind turbine 
level and then utilize AI methods for farm-level fault 
classification. Such bifurcation circumvents the necessity 
to replicate computationally expensive diagnostics at each 
wind turbine and also gives the ability to utilize plant-level 
knowledge. 

Publications: 
[1]	 S.T. Kandukuri, K.G. Robbersmyr et.al., Toward 
	 Farm-level Health Management of Offshore Wind  
	 Farms for Maintenance Improvements, International  
	 Journal of Advanced Management Technology, 2016
[2]	 S.T. Kandukuri, J.S.L. Senanayaka et.al., A Two-stage  
	 Fault Detection and Classification for Electric Pitch  
	 Drives in Offshore Wind Farms using Support Vector  
	 Machine, IEEE ICEMS conference, Sydney, AU, 2017
[3]	 S.T. Kandukuri, J.S.L. Senanayaka et.al., Current  
	 Signature based Fault Diagnosis of Field Oriented and  
	 Direct Torque Controlled Induction Motor Drives, SAGE  
	 Journal of Systems and Control Engineering, 2017
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A two-stage fault detection and classification scheme for wind turbine pitch systems using AI.
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DEVELOPING EFFICIENT 
HEALTH CHECKS ON 
ELECTRICAL MACHINERY

Taking the ”patients” temperature with thermal sensors 
placed on critical machine parts, is how operators have 
been monitoring machine health. But it has proven to be 
inadequate, according to Khang Huynh, associate professor 
at UiA, Department of Technology. 

”We are talking about heavy machinery with several 
layers, i.e a stator. Thermal sensors only measure 
temperature rise on the surface but will miss out higher 
temperatures in the inner layers. An evolving machine 
failure may thus go undetected. This is the ever present 
nightmare of the operator. To avoid faults, most of 
electrical machines are working under temperature limits, 
just based on operation experience or guidelines from 
manufacturers. This leads to non-optimal operating 
condition or causes significant energy losses in electrical 
machines, Huynh says”.

The approach of Huynh and his collagues is applying 
sensorless og ‘soft’ sensor technology. Sensorless 
technology monitors signal outputs from the current 
production output, and use advanced mathematical 
calculation to predict imminent temperature rise in the 
machinery. 

Alternative approach is using artificial intelligence-based 
methods, e.g machine learning algorithms, once trained and 
validated, can fuse and analyse data from a set of diffe-
rent signals of the electrical machinery, and predict future 
temperature rise. 

In Norway, rotating electrical generators produce over 
99% of the electrical energy. About 65% of this energy 
is transformed back to mechanical energy by electrical 
motors. Lifetime of electrical machines has received an 
increased attention during the last decades:

Over 30% of faults in conventional electrical machines 
occur in stator windings, being the thermal stresses 
directly or indirectly responsible for them. Higher harmonics 
from the frequency converters cause an additional loss up 
to 20-30% (resulting in temperature rise) in the electrical 
machines. As a result, the frequency converters render 
more failures in electrical machines.

Unlike industrial production, modern electrical machines 
for electric powertrains (e.g. traction, electric vehicles or 
pitch/yaw system of wind-turbines) operate dynamically, 
changing speed and torque according to driver’s demands. 
Moreover, electric drivetrains are intensively exposed to 
mechanical-, chemical-, dust- and thermal stress in harsh 
environment and thermal cycling due to the dynamic 
operation. Consequently, detection and prevention of the 
faults in the electrical machines in such powertrains are 
more important and challenging than those in industrial 
production.

– Within inverter-fed electrical machines, the inverter 
output voltages as a series of square-pulses change very 
rapidly within a very short time, resulting in the so-called 
dV/dt and parasitic effects. These effects produce high-
frequency circulating currents in other components in the 
drivetrain, e.g. bearings or metal-based items. Once these 
currents pass through a bearing from one ring to another 
via rolling elements, additional loss or heat is produced on 
the bearing. Consequently, the faults in bearing and stator 
winding occur more frequently than before.

Temperature rise, mainly responsible for faults in electric 
drives, is mostly based on single-point measurements 
performed by sensors installed in the middle or on the 
surface of stator windings and switching modules. 
Those sensors are not able to monitor or predict the 
maximum temperature since the loss and temperature 
rise are unevenly distributed in the observed devices due 
to proximity and skin effects. Installing many sensors at 
different positions in the winding or frequency converter to 
monitor the hottest spots is expensive and even infeasible 
in certain locations. A ‘soft’ sensor or sensorless approach 
would be more effective and economic, and would allow 
avoiding production interruptions due to physical failures 
of sensors. Our recent activities have focused on numerical 
analysis, parameter and system identification using nature 
‘inspired’ optimizations, in which the effects of higher 
harmonics of frequency converters, manufacturer catalogs, 
and system phenomenon e.g skin depth, cooling, saturation, 
eddy-currents have been taken into consideration.

Condition Monitoring for Electric Drive Components

When electrical machinery catches fever, the consequence can be 
fatal. Researchers at UiA are exploring new, efficient health checks.
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A simple and reliable thermal model, which was recently 
developed based on current levels and estimated time 
constants, can represent major phenomena associated with 
thermal behavior of small and medium-size electric motors 
and drives. 
For big-size electrical machines, an advanced numerical 
modelling is required to take the effect of eddy-current, 
circulating currents, core and manufacturing process into 
consideration. A co-simulated/coupled thermal and elec-
tromagnetic analysis allows predicting temperature rise 
distribution. Alternatively, a data-driven emulator seems 
to be a promising approach to predict temperature rises in 
modern electric drives.
 
Incipient faults normally occur when the system has a 
change in dynamic operation e.g. load variation, during 
starting, or shutdown. During the transients, the system 
qualities are nonstationary or varied in both time and 
frequency system qualities vary in both frequency and time.    
Conventional analysis based on stationary qualities and 
particular sensors has a limited potential to detect a right 
fault in the transients, and therefore might provide a false 
indication of the incipient faults in drivetrains. It was shown 
in our recent work that active and adaptive filters allow 
observing and extracting weak signatures in the beginning 
of degradation process of a bearing fault in time domain. 

Time-frequency analysis. e.g Short-time Fourier transform
(STFT) and Wavelet transform (WT) could analyze 
nonstationary qualities and explore features of incipient 
faults during transients while Fast Fourier transform (FFT) 
is a common tool for the fault detection in steady state. 
A combination of advanced filters and signal processing 
seems to be a right approach to reduce the uncertainty of 
the fault analysis and computation burden. An alternative 
approach to detect incipient faults during transients is to 
use artificial intelligentbased methods, which have been 
recently developed by other researchers within Dynamics 
research group. 

Deep learning algorithms can improve accuracy of fault 
detection and classifications. Numerical modelling .e.g 
finite element analysis can lower challenges in training 
and validating artificial intelligent based methods.

R&D activities:
About 40% of faults in electrical machines occur in stator 
windings, being the thermal stresses directly or indirectly 
responsible for them. Sensors mounted on the surface 
of stator windings and switching modules are not able to 
detect maximum temperature rises in electrical machines 
and frequency converters.

Huynh Van Khang conducts research at Teknova’s lab in Grimstad.
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A ‘soft’ sensor or sensorless approach based on production 
outputs. e.g currents, powers to predict temperature 
distributions in electric machinery while avoiding production 
interruptions due to physical failures of sensors. Alternatively,
artificial intelligent based methods .e.g data-driven 
emulator can fuse and analyse data from different signal 
to predict temperature rises and detect incipient faults in 
modern electric drives.

Outlook:
A simple and reliable thermal model is important to predict 
quickly maximum temperature rise in machinery.
 Incipient faults normally occur when the system has a 
change in dynamic operation e.g. load variation, during 
starting, or shutdown. During the transients, the system 
qualities are nonstationary or varied in both time and 
frequency system qualities vary in both frequency and time. 
Advanced signal processing and adaptive filters need to be 
developed further to detect faults in early stage transient 
states.
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	 drives based on loadability curves to facilitate design  
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	 Industrial informatics, Volume: 13, Issue: 3, Page(s):  
	 985 - 994, 2017.
[2]	 W. Pawlus, J. T. Birkeland, H.V. Khang, M. R. Hansen,  
	 ”Identification and Experimental Validation of  
	 Induction Motor Thermal Model for Improved  
	 Drivetrain Design,” IEEE Transactions on Industry  
	 application, Volume: 53, Issue: 5, Page(s): 4288 - 4297, 	
	 2017.
[3]	 H.V. Khang, W. Pawlus, Kjell G. Robbersmyr,  
	 ”Investigation and Reduction of Losses on Inverter- 
	 fed Induction Motors,” The 19th Conference on Power  
	 Electronics and Applications, Energy Conversion  
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Jagath Sri Lal Senanayaka has developed an experimental test bench for his project. 
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HOW BIG 
DATA CAN 
PROTECT 
YOUR 
MACHINE

”Everybody wants safe and reliable operation of their 
machinery. Analysing vibration and current with sensor 
technology is an established method of detecting problems. 
This, however, requires highly specialised maintenance 
personnel. To many companies the cost and reliability 
can be a challenge, says Jagath Sri Lal Senanayaka, PhD 
research fellow at Department of Engineering and Science 
at UiA”.
 
Jagath thinks implementing the use of big data, machine 
learning and data fusion can help industry for monitoring 
their electrical machinery and drivetrains automatically.
Machine learning algorithms can be trained to detect 
failure conditions at early stage and warn the operators of a 
possible failure. The key is collecting vibrations and current 
data from thousands of similar machinery running in 
industries across the world and process these with 
machine-learning algorithms.
 
”We need a cloud-based service whereby the manufacturer
 of the electrical machines collects signal data from the 
running machines in the plans of their customers. This data 
would have to be collected online every second day of the 
week. The manufacturer gets huge amounts of data that 
can be used in deep machine learning algorithms, 
and the analysis results can be shared with the customers, 
Jagath says. This will be an optional cloud-based fault 
diagnosis service for the customers”.

Condition Monitoring of
Electric Powertrains

Big data and advanced algorithms 
can soon protect your critical 
electrical machinery and  
drivetrains more efficiently  
than conventional manpower.
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According to Jagath , the system will be able to detect and 
classify faults and provide a prognosis of how long will he 
machine continue until it fails.

It is important to guarantee the safe and reliable operations 
of critical industrial machines such as electric generators, 
turbines, pumps, conveyors, compressors, fans. To ensure 
the safe and reliable operations, Modern industrial 
maintenance strategies comprise with condition monitoring 
methods. Based on measured machine conditions, predictive 
maintenance schedules are arranged and prognosis 
techniques are used to find out the remaining life of the 
machine or component. 

Vibration signal and current signal analysis together with 
advanced signal processing techniques have been widely 
used in modern condition monitoring applications. These 
techniques highly rely on domain expert knowledge and the 
methods are expensive as it requires separate department 
with a skilled staff.

Machine learning algorithms have shown success in 
many different application areas such as computer vision, 
e-commerce, data security, natural language processing, 
medical diagnosis etc. Machine learning algorithms are 
grounded on data-driven approach where the algorithms 
can be trained for specific tasks such as classification, 
detection and pattern recognitions. There is high industrial 
demand for intelligent fault diagnosis and prognosis 
algorithms in critical machine applications where the 
focus is to reduce the maintenance cost by applying on-line 
condition monitoring techniques and decrease the human 
staff. Therefore, the state-of-the-art condition monitoring
techniques combine the condition monitoring domain 
knowledge together with the machine learning algorithms. 

Even though there are many machine learning algorithms 
and fancy promises from these Data-driven approaches, 
proper selection of algorithms is a challenging task.  
Condition monitoring domain experience, signal processing 
and machine learning algorithms expertise are critical for 
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selecting appropriate algorithm for the intended applications.
 Furthermore, together with machine learning algorithms, 
Data fusion approach can provide more reliable and 
accurate fault diagnosis capabilities than diagnosis using 
separate sensors alone. Therefore, my PhD research 
project focus on developing an online condition monitoring 
and fault diagnosis system based on machine learning and 
data fusion approach. 

Machine learning algorithms are the central part of this 
proposed system. There are several chooses for selecting 
a proper algorithm for the application. We can either use 
traditional machine learning algorithms such as support 
vector machine, decision tree, artificial neural networks 
with few hidden layers or contemporary deep artificial 
neural networks with several hundred hidden layers. This 
algorithm can be trained using supervised or unsupervised 
passion, and after the training process, it can be employed 
for real-time condition monitoring tasks. 

R&D activities:
Various machine learning and data fusion algorithms have 
been developed and tested using publicly available  
rotational machine fault related data sets. Based on the 
analysis results, serval research papers were published. 
Furthermore, an experimental test bench is developed for 
this study which consisted of an electric power-train and an 
adjustable load. Seeded Bearing faults, gearbox faults and 
electric motor faults can be tested using this experimental 
setup. The electric discharge machining method will be 
used to make controlled mechanical damages in bearings 
and gears. 

Outlook:
Different types of faults such as bearing faults, gear faults 
and electrical winding faults will be tested using this test 

setup. Vibration and motor currents will be recorded and 
based on this information, several signal processing, 
machine learning and data fusion techniques will be tested, 
and best method for this application will be identified. 
Furthermore, robust against different loads, speeds, 
operational environment, noise and disturbances will be tested.
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SFI offshore mechatronics

SFI Offshore Mechatronics is based on the Agder cooperation 
within the field of Mechatronics, initiated by University of 
Agder with partners from the local industry of oil- and gas 
equipment production. This cooperation has been active 
for several years, and has its origin in the establishment of 
Master and PhD education to produce needed candidates 
for the regional and national labour market. Since then, the 
cooperation has developed to include R&D projects and 
mobility between industry companies and the university.
 

The main goal of SFI Offshore Mechatronics is to develop 
new concepts for autonomous systems where the  
construction, engineering and design, invite autonomy to 
minimize the number of manual processes, as well as to 
reduce risk and cost related to offshore drilling operations. 
The research shall result in enabling technologies,  
equipment, processes and solutions for autonomy and  
monitoring of heavy machinery, and for handling and  
analysing large data flows under demanding conditions. 
The research is carried out in six work packages: WP1 
Drives, WP2 Motion Compensation, WP3 Robotics and 
Autonomy, WP4 Modelling and Simulation, WP5 Monitoring 
Techniques and WP6 Data Analytics, IT Integration and  
Big Data.
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Other relevant projects

LOGLTP
The aim of the project is to develop a scientific method for 
converting logged operational data from equipment into 
useful information for maintenance and design purposes.
 
The current project is directed towards the offshore  
industry, using case studies together with the project 
partners, MacGregor, Cameron, and Certex. However, the 
methods and algorithms developed will apply to other 
kinds of machinery as well, wherever solid constructions 
and moving components are involved.

 

To do this, we will convert the computationally expensive 
general methods for fatigue calculation into more specific, 
simplified models. These surrogate models can then run in 
real-time with operational data as input, resulting in  
real-time availability of remaining useful life. With knowledge 
of how the equipment is actually used, maintenance  
intervals may be adjusted, and design of future products 
can be done with much better insight into the actual  
requirements and needs of the customer.

Pole Project
“Remote sensing has been successfully used for surface 
monitoring of electricity power lines, poles, transformers 
and other equipment so that defects are discovered and  
power supply interruptions are reduced. Nevertheless, 
remote sensing technologies and techniques are still facing
the complex task to effectively screening the inside of the 
infrastructure and detect hidden defects, for example, rot 
inside utility poles and over and underground, thus, hardly 
any non-visible damage and defects can be recognized 
without to destructively reveal them.
 
This competency building initiative is devoted to establishing  
a benchmark concept and methodologies for airborne  
remote sensing of subsurface defects in large and complex  
infrastructures, specifically, of wooden utility poles within 
the electricity transmission and distribution network.  
The ambition of this project is to lay the foundation to 
enable that all poles are in service to their true remaining 
useful lifetime and preventing unpredicted failure.
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